首页> 外文OA文献 >A numerical study of the development of bulk scale-free structures upon growth of self-affine aggregates
【2h】

A numerical study of the development of bulk scale-free structures upon growth of self-affine aggregates

机译:作者:张莹莹,王汝传,建筑科   自我亲和聚集体的增长

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During the last decade, self-affine geometrical properties of many growingaggregates, originated in a wide variety of processes, have been wellcharacterized. However, little progress has been achieved in the search of aunified description of the underlying dynamics. Extensive numerical evidencehas been given showing that the bulk of aggregates formed upon ballisticaggregation and random deposition with surface relaxation processes can bebroken down into a set of infinite scale invariant structures called "trees".These two types of aggregates have been selected because it has beenestablished that they belong to different universality classes: those ofKardar-Parisi-Zhang and Edward-Wilkinson, respectively. Exponents describingthe spatial and temporal scale invariance of the trees can be related to theclassical exponents describing the self-affine nature of the growing interface.Furthermore, those exponents allows us to distinguish either the compact ornon-compact nature of the growing trees. Therefore, the measurement of thestatistic of the process of growing trees may become a useful experimentaltechnique for the evaluation of the self-affine properties of some aggregates.
机译:在过去的十年中,许多生长的聚集体的自仿射几何特性已经被很好地表征,这些聚集体起源于各种各样的过程。但是,在寻找基本动力学的统一描述方面,进展甚微。大量的数值证据表明,通过弹道聚集和表面松弛过程的随机沉积形成的大量聚集体可以分解为一组称为“树”的无限尺度不变结构。选择这两种类型的聚集体是因为已经确定它们属于不同的普遍性类别:分别是Kardar-Parisi-Zhang和Edward-Wilkinson的类别。描述树木的时空尺度不变性的指数可能与描述生长界面的自仿射性质的经典指数有关。此外,这些指数使我们能够区分生长树木的紧实性或非紧实性。因此,对树木生长过程统计的测量可能成为评价某些骨料自亲和性的有用实验技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号